1. 蛋白沉淀 蛋白能溶于水是因為其表面有親水性氨基酸,在蛋白質的等電點處若溶液的離子強度特別高或者特別低,蛋白則傾向于從溶液中析出。硫 酸銨是沉淀蛋白zui常用的鹽,因為它在冷的緩沖液中溶解性好,冷的緩沖液有利于保持目的蛋白的活性。硫 酸銨分餾常用作試驗室蛋白純化的*步,它可以初步粗提蛋白質,去除非蛋白成分。蛋白質在硫 酸銨沉淀中較穩定,可以短期在這種狀態下保存中間產物,當前蛋白質純化多采用這種辦法進行粗分離翻。在規?;a上硫 酸銨沉淀方法仍存在一些問題,硫 酸銨對不銹鋼器具的腐蝕性很強。其他的鹽如硫 酸鈉不存在這種問題,但其純化效果不如硫 酸銨。除了鹽析外蛋白還可以用多聚物如PEG和防凍劑沉淀出來,PEG是一種惰性物質,同硫 酸銨一樣對蛋白有穩定效果,在緩慢攪拌下逐漸提高冷的蛋白溶液中的PEG濃度,蛋白沉淀可通過離心或過濾獲得,蛋白可在這種狀態下長期保存而不損壞。蛋白沉淀對蛋白純化來說并不是多么好的方法,因為它只能達到幾倍的純化效果,而我們在達到目的前需要上千倍的純化。其好處是可以把蛋白從混雜有蛋白酶和其他有害雜質的培養基及細胞裂解物中解脫出來。
2. 緩沖液的更換 雖然更換緩沖液不能提高蛋白純度,但它卻在蛋白純化方案中起著極其重要的作用。不同的蛋白純化方法需要不同pH及不同離子強度的緩沖液。假如你用硫 酸銨將蛋白沉淀出來,毫無疑問蛋白是處在高鹽環境中,需要想辦法脫鹽,可用的方法有利用半透膜透析,通過勤換透析液體去除鹽分,此法尚可,但需幾個小時,通常要過夜,也難以用予大規模純化中。新型的設備將透析膜夾在兩個板中間,板的一側加緩沖液,另一側加需脫鹽的蛋白溶液,并在蛋白溶液一側通過泵加壓,可以使兩側溶液在數小時內達到平衡,若增加對蛋白溶液的壓力,還可迫使水分和鹽更多通過透析膜進入透析液達到對蛋白濃縮的目的。也有出售的脫鹽柱,柱內的填料是小孔徑的顆粒,蛋白分子不能進入孔內,先于高濃度鹽離子從柱中流出,從而使二者分離。蛋白純化的每一步都會造成目的蛋白的丟失,緩沖液平衡的步驟尤甚。蛋白會結合在任何它能接觸的表面上,剪切力、起泡沫和離子強度的快速變化很容易讓蛋白失活。
3.離子交換色譜 這是在所有的蛋白純化與濃縮方法中zui有效方法。基于蛋白與離子交換樹脂間的相互電荷作用,通過選擇不同的緩沖液,同一種蛋白既可以和陰離子交換樹脂(能結合帶負電荷的分子)結合,也可以和陽離子交換樹脂結合。樹脂所用的帶電基團有四種:二乙基氨基乙基用于弱的陰離子交換樹脂;羧甲基用于弱的陽離子交換樹脂;季銨用于強陰離子交換樹脂;甲基磺酸酯用于強陽離子交換樹脂。蛋白質由氨基酸組成,氨基酸在不同的pH環境中所帶總電荷不同。大多數蛋白在生理pH(pH6~8)下帶負電荷,需用陰離子交換柱純化,的pH下蛋白會變性失活.應盡量避免。由于在某個特定的pH下不同的蛋白所帶電荷數不同,與樹脂的結合力也不同,隨著緩沖液中鹽濃度的增加或pH的變化,蛋白按結合力的強弱被依次洗脫。在工業化生產中更多地是改變鹽濃度而不是去改變pH值,因為前者更容易控制。在實驗室中幾乎總是用鹽濃度梯度去洗脫離子交換柱,利用泵的輔助可以使流入柱的緩沖液中鹽濃度平穩地上升,當離子強度能夠中和蛋白的電荷時,蛋白就被從柱上洗脫下來。但在工業生產中鹽濃度很難控制,所以常用分步洗脫而不足連續升高的鹽梯度。與排阻層析相比,離子交換特異性更好,有更多的參數可以調整以獲得*的純化效果,樹脂也比較便宜。值得一提的是,即便是用zui控制的條件,僅用離子交換單一的方法也得不到純的蛋白,還需要其他的純化步驟。
4. 親和層析 親和層析基于目的蛋白與固相化的配基特異結合而滯留,其他雜蛋白會流過柱子。本方法存在的問題是:單抗非常昂貴,而且也需先純化;單抗與目的蛋白結合力太強.要用苛刻的條件來洗脫,這會使目的蛋白失活并破壞單抗;混合物中的其他蛋白如蛋白酶也可能破壞抗體或與它們非特異結合;某些單抗也會在純化過程中從樹脂上解離下來混入產物中,也需要從終產物中去除。親和柱通常在純化過程的后期應用,此時標本體積已縮小,大部分的雜質已經去除。谷胱甘肽S-轉移酶(Glutathione S-transferase,GST)是zui常用的親和層析純化標簽之一,帶有此標簽的重組蛋白可用交聯谷胱甘肽的層析介質純化,但本方法有以下缺點:首先,蛋白上的GST必須能合適地折疊,形成與谷胱甘肽結合的空間結構才能用此方法純化;其次,GST標簽多達220個氨基酸,如此大的標簽可能會影響表達蛋白的可溶性,使形成包涵體,這會破壞蛋白的天然結構,難于進行結構分析,有時即便純化后再酶切去除GST標簽也不一定能解決問題。另一種可應用的親和純化標簽是6組氨酸標簽,組氨酸的咪唑側鏈可親和結合鎳、鋅和鈷等金屬離子,在中性和弱堿性條件下帶組氨酸標簽的目的蛋白與鎳柱結合,在低pH下用咪唑競爭洗脫。組氨酸標簽與GST相比有許多優點,首先,由于只有6個氨基酸,分子量很小,一般需要酶切去除:其次,可以在變性條件下純化蛋白,在高濃度的尿素和胍中仍能保持結合力;另外6組氨酸標簽無免疫原性,重組蛋白可直接用來注射動物,也不影響免疫學分析。雖然有這么多的優點,但此標簽仍有不足,如目的蛋白易形成包涵體、難以溶解、穩定性差及錯誤折疊等。鎳柱純化時金屬鎳離子容易脫落漏出混入蛋白溶液,不但會通過氧化破壞目的蛋白的氨基酸側鏈,而且柱子也會非特異吸附蛋白質,影響純化效果。若目的蛋白可與某種碳水化合物特異結合,或者需要某種特殊的輔因子,可將該碳水化合物或輔因子固相化制成親和柱,結合后目的蛋白可用高濃度的碳水化合物或輔因子洗脫。
5. 疏水作用 層析蛋白是由疏水性和親水性氨基酸組成的。疏水性氨基酸位于蛋白空間結構的中心部位,遠離表面的水分子。親水性氨基酸殘基則位于蛋白表面。由于親水性氨基酸吸引了許多的水分子,所以通常情況下整個蛋白分子被水分子包圍著,疏水性氨基酸不會暴露在外。在高鹽濃度的環境中蛋白的疏水性區域則會暴露并與疏水性介質表面的疏水性配基結合。不同的蛋白疏水性不同,與疏水作用力大小也不同,通過逐漸降低緩沖液中鹽濃度沖洗柱子,在鹽濃度很低時,蛋白恢復自然狀態,疏水作用力減弱被洗脫出來。
疏水性樹脂的選擇性是由疏水性配基的結構決定的,常用的直鏈配體為烷基配體(alkyl ligands)和芳基配體(arylligands),鏈越長結合蛋白的能力也越強。理想樹脂種類的選擇應根據目的蛋白的化學性質而定,不能選擇結合力太強的樹脂,結合力太強的樹脂會很難洗脫,所以開始時應選用中等結合力的苯基樹脂探討條件。為了使選擇合適的介質更容易,Amersham Biosciences推出了疏水作用樹脂選擇試劑盒,里面包括5種不同的樹脂供比較。疏水層析很適合作為離子交換純化的下一個步驟,因為疏水作用層析在高鹽濃度下上樣,從離子交換得到的產物不需更換緩沖液即可使用。蛋白又在低鹽緩沖液中洗脫,又省去了下一步純化前的更換緩沖液的步驟,既節約了時間,又減少了蛋白的丟失。
6. 排阻層析 也叫凝膠過濾或分子篩。排阻層析柱的填充顆粒是多孔的介質,柱中圍繞著顆粒所能容納的液體量叫流動相,也稱無效體積。太大的蛋白不能進入顆粒的孔內,只能存在于無效體積的溶液中,將會zui早從柱中洗脫出來,對這部分蛋白無純化效果。由于各種蛋白的分子大小不同,擴散進入特定大小孔徑顆粒內的能力也各異。大的蛋白分子會被先洗脫出來,分子越小,洗脫出來的越晚。為得到*的純化效果,應將孔徑大小選在目的蛋白能在無效體積和總柱床體積的中點附近洗脫。排阻層析有其他方法所不具備的優點,首先所能純化的蛋白分子量范圍寬,Tosoh Biosep公司的聚合物樹脂,排阻極限可達200000kD;其次,樹脂微孔的形狀適合分離球形的蛋白質,純化過程中也不需要能引起蛋白變性的有機溶劑。應該注意的是某些蛋白不適合用凝膠過濾純化,因為本技術所用樹脂有輕度的親水性,電荷密度較高的蛋白容易吸附在上面。排阻層析從不用于純化過程的早期,因為這種方法要求標本高度濃縮,上樣量只能在柱體積的1%~4%之間,柱子要細而長才能得到好的分離效果,樹脂本身也比較昂貴,規模化的工業生產中不太適用。